
GUIDE

Hands-on chaos testing
with OpenText Professional
Performance Engineering
Take advantage of OpenText Professional Performance
Engineering for all of your chaos engineering needs. Read now for
a step-by-step guide on how to get started with this integration.

Hands-on chaos testing with OpenText Professional Performance Engineering 2/13

Contents

Getting started with OpenText Professional Performance Engineering 3

Adding chaos testing 4

Creating a Gremlin scenario for chaos testing 6

Performing the chaos test using controller 9

Test results 12

Turning chaos into confidence 13

Hands-on chaos testing with OpenText Professional Performance Engineering 3/13

A distributed services approach entails countless variables that even the
most meticulous development team cannot predict. Even when each service
functions perfectly in a vacuum, interactions between them can be—in a
word—chaotic. So, to most effectively build infrastructure resilience against
the unpredictable, test engineers developed chaos engineering.

This disciplined form of software engineering prioritizes the knowledge that
failures are inevitable and that systems can be designed to withstand them
without significantly affecting the end-user experience—even at scale. A
primary component of this process is chaos testing, which simulates failures
in a system so that developers can build resilience for the broadest possible
array of failure scenarios.

To further explore this concept, this guide will walk through using Gremlin to
add some chaos to an application and OpenText™ Professional Performance
Engineering to analyze the application’s ability to handle the failures.

Getting started with OpenText Professional
Performance Engineering
To follow this tutorial, ensure that you have the following prerequisites.
Additionally, note that these services are currently compatible with
Windows only.

• OpenText Professional Performance Engineering (free trial available)

• Gremlin

• The OpenText™ VuGen tool for simulating typical user behavior on
an application

• A web application to test. This tutorial uses this Spring Boot application,
but you can use any app to which you have the rights.

Before proceeding, follow these steps to install and configure Gremlin on
your machine.

https://www.opentext.com/what-is/chaos-engineering
https://www.opentext.com/products/professional-performance-engineering
https://www.opentext.com/products/professional-performance-engineering
https://www.opentext.com/products/professional-performance-engineering/trial
https://www.gremlin.com/
https://github.com/spring-projects/spring-petclinic
https://www.gremlin.com/community/tutorials/how-to-install-and-run-gremlin-on-windows/

Hands-on chaos testing with OpenText Professional Performance Engineering 4/13

Adding chaos testing

Setting environment for chaos testing
To get started, you’ll need to enable OpenText Professional Performance
Engineering to simulate virtual users using the OpenText Professional
Performance Engineering VuGen (Virtual User Generator) script.

Open the VuGen App on your Windows system. Click the + symbol at the
upper-left corner and select the Add New Script option.

From the Create a New Script window, select the Single Protocol option under
the Category: tab at the far left.

Then, under Protocol:, select the Web - HTTP/HTML option.

Next, provide the name and location of your script. Your screen should look
similar to this:

Once you’ve filled in the required fields, click the Create button.

Hands-on chaos testing with OpenText Professional Performance Engineering 5/13

If the application doesn’t do so automatically, use the Solutions Explorer pane
to navigate to Chaos Test > Actions. Then, double-click on Action to add the
code below. Note that the specified URL is for the localhost, as this is where
the demo web application is hosted.

Action()
{
lr_start_transaction(“01_HomePage”);
// Replace the URL with your server IP address
web_custom_request(“web_custom_request”,
“URL=http://127.0.0.1:8080/”,
“Method=GET”,
“TargetFrame=”,
“Resource=0”,
“Referer=”,
“Body=”,
LAST);

lr_end_transaction(“01_HomePage”, LR_AUTO);
return 0;
}

Your VuGen window should now look similar to this:

The OpenText Professional Performance Engineering script above simulates a
user-sent GET request to the specified URL.

Click the (Run) button on the toolbar to check whether the script runs
without errors. If it runs successfully, VuGen will open a Summary tab similar
to that in the following image. Otherwise, it will prompt you to resolve any
discovered errors.

Hands-on chaos testing with OpenText Professional Performance Engineering 6/13

You’ve now successfully created a script that enables OpenText Professional
Performance Engineering to simulate virtual users.

Creating a Gremlin scenario for chaos testing
Next, for this demonstration, you’ll create two attacks:

• A CPU attack to assess how the hosted web application performs when it
uses nearly all available CPU resources.

• A latency attack to test the application’s responsiveness over varying
network conditions.

Once you’ve finished signing up for Gremlin, you need to create a team.
This will help you access the Gremlin scenario using its Team ID and API key.

Note that you can view the installation documentation to ensure that you’ve
properly configured the application for Windows.

Now, click on Dashboard from the left-hand sidebar. Then, click the Create
Scenario button to begin creating a chaos testing scenario.

https://www.gremlin.com/docs/infrastructure-layer/installation/

Hands-on chaos testing with OpenText Professional Performance Engineering 7/13

If you’ve configured your Gremlin app and teams correctly, you should be able
to see the number of hosts connected to the server. The image below shows
that one host is available to test the scenario on the Windows system:

Click Add a new attack to open the Choose a Gremlin section.

Then, select the Resource radio button from the Category list and click CPU
from the Attacks list.

Next, set the Length of the attack to 120 seconds and ensure that the CPU
Capacity value is set to 100.

Now, select All Cores from the dropdown menu to ensure all available cores
are used for testing.

Finally, click the Add to Scenario button.

Hands-on chaos testing with OpenText Professional Performance Engineering 8/13

Your Dashboard should now appear similar to what’s shown below:

You can name your scenario and add a brief description, but don’t save the
scenario just yet—you’ll now add the latency attack.

Once again, click Add a new attack.

This time, select Network from the Category list and click Latency in the
Attacks section.

Then, update the Length of the attack to 120 seconds and keep the delay at
100 MS (milliseconds). You can leave the rest of the fields blank or add optional
details for your specific scenario.

Once finished, click the Add to Scenario button.

Your window should now look like the image below:

Hands-on chaos testing with OpenText Professional Performance Engineering 9/13

Finally, click the Save Scenario button. Now, when you click on the Scenarios
button from the sidebar, you should see a section named for your created
test scenario.

Performing the chaos test using controller
Now you’re ready to execute your chaos test using Controller.

When you open Controller on your Windows machine, the program will open a
New Scenario window. Select Manual Scenario under Scenario Type.

Next, add the VuGen script created earlier. Click + Add Scripts and navigate
to the folder where the script is saved. Select the script file and click the
ADD button.

Once you’ve added the script, Controller will open it, as shown in the
image below:

You’ll now need to define a few criteria in the Global Schedule panel at the
lower-left corner of the window.

First, double-click on the Start Vusers section and set the Start value to 50
Vusers. This is the maximum value that OpenText Professional Performance
Engineering Community Edition permits.

Hands-on chaos testing with OpenText Professional Performance Engineering 10/13

Additionally, set the (HH: MM: SS) parameter to 00:00:01. This represents one
user logging in per second to maximize the chaos introduced into the system.

Then, click Next to move to the Duration field. Set it to 00:04:00. This means
that the test will run for four minutes.

Next, navigate to the StopVusers field and select the Simultaneously
radio button. This will create an event in which all users exit the app at the
same time.

Finally, click the OK button.

You should now notice that the graph indicating Vusers versus Time
has changed:

Note that since you’re testing for chaos, you can configure the test to ignore
think time. To do so, locate the checkbox for your script under the Scenario
Scripts section in the upper-left corner of the window. Right-click the white
space near the checkbox and navigate to Runtime Settings. Then, in the
General section of the new pane, click on Think Time. Select the radio button
for Ignore think time.

To add the chaos scenario created in the Gremlin app, click the rightmost
button directly beneath the Scenario Schedule header. This is the Disruption
Events button.

Hands-on chaos testing with OpenText Professional Performance Engineering 11/13

Then, click the +AddEvent button and provide the API key and Team ID of the
team you created in your Gremlin account.

Once you add the Team ID and API key, you’ll see the created scenario as
shown in the image below.

Select the event and click ADD button to add it to the controller scenario.
Set the Start Time to 00:01:00. This means that the disruption event will start
one minute into the scenario.

Next, click the floppy disk/save icon below the top menubar and provide
a name for your saved scenario. The demonstration has kept the name
as Scenario1.lrs.

Select your destination folder for the .lrs file and click Save.

Now, you can run the scenario by clicking the Start Scenario button toward the
upper-righthand corner of the window.

OpenText Professional Performance Engineering will then produce graphs of
the results and display them as shown below:

Hands-on chaos testing with OpenText Professional Performance Engineering 12/13

Test results
Once the scenario has finished running, click the Reports option from the
menubar and select Analyze Results.

Once all the summarized results have been generated, you’ll receive a pop-up
to view them.

Click Yes. This will open graphs displaying Hits per Second, Throughput,
Average Transaction Response Time, and several other statistics.

You can now compare the output data.

Click on the Throughput graph, then right-click on the chart.

Then, select the Merge Graphs option and choose the Hits per Second graph
from the dropdown. Click OK to see the detailed diagram as shown in the
image below.

The chart indicates that for the first minute, the application was up and running
with high throughput and hits. Then, after the chaos started, it dipped sharply
around 01:28, seesawing dramatically over the next 90 seconds, at which point
the chaos event ends.

Copyright © 2025 Open Text • 06.25 | 264-000018-003

Merging Throughput and Average Response Time shows an inverse
relationship between throughput and response time because of the chaos:

Your results will likely vary depending on your system configurations and
scenario values. Still, the detailed analysis of how well the configured app
handles the chaos is invaluable in a production environment. It can enable you
to determine what triggers which failures and develop solutions to manage
similar real-world events.

Turning chaos into confidence
Chaos engineering is crucial for preventing the breakdowns of services that
can eventually lead to full application failures. Now that you’ve experienced
some of the capabilities that chaos testing can provide, you can more clearly
identify ways to integrate it into your development and testing cycles. As
organizations continue to shift to distributed architectures, the benefits of this
engineering, testing, and analysis make the practice a principal component in
building resilience within chaotic systems.

Learn more at

OpenText Professional Performance Engineering

OpenText DevOps Cloud

https://www.opentext.com/products/professional-performance-engineering
https://www.opentext.com/products/devops-cloud

	Getting started with OpenText Professional Performance Engineering
	Adding chaos testing
	Creating a Gremlin scenario for chaos testing
	Performing the chaos test using controller
	Test results
	Turning chaos into confidence

Accessibility Report

		Filename:

		hands-on-chaos-testing-with-opentext-professional-performance-engineering-guide-en.pdf

		Report created by:

		Sar Dugan

		Organization:

		

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 0

		Passed: 30

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top