
TOP REASONS

5 Reasons why SAST + DAST from OpenText
makes sense
Get the most complete view of applications’ weaknesses and vulnerabilities

The combination of static (SAST) and dynamic (DAST) application security
testing methodologies provides a more comprehensive view of an application’s
risk posture. Static analysis tools give thorough feedback early in the
SDLC, while dynamic analysis tools can give security teams a quick win by
immediately discovering exploitable vulnerabilities in either production or
preproduction environments. Testing in both ways yields the most complete
view of the risk posed by weaknesses and vulnerabilities within the application.

1 A unified taxonomy across testing methods enables a complete
view of vulnerabilities.
The OpenText Software Security Research team group is a team
of experts in the application security industry. This team writes
the rules which drive our static, dynamic, and runtime products.
When researching new vulnerabilities, the team works together
to identify the best and most efficient modality for detection. By
leveraging a unified taxonomy across all three testing methods,
OpenText™ Static Application Security Testing can detect a
weakness in source code with OpenText Static Application
Security Testing, then identify that same finding using dynamic
analysis with OpenText solutions in running environments where
the weakness becomes a real vulnerability. Where static and
dynamic can both detect a vulnerability, a rule is provided for each
technology while maintaining a focus on accuracy and speed.

Customer value
Static and Dynamic application security testing are
complementary technologies in their ability to identify
vulnerabilities across the entire SDLC, from development, to QA,
to production. When these two technologies are unified across
a common taxonomy, they augment one another to deliver a
comprehensive solution. Customers see a more complete view of
the vulnerabilities that threaten their organizations.

Real world example
Consider a basic weak SSL cipher vulnerability. While static and
dynamic testing can both detect this weakness, the finding is
heavily tied to the application’s implementation in production.
Static testing modalities will commonly return limited results for
instances where SSL is configured from within the application.
However, dynamic testing will provide a view of the web server
configuration for instances where SSL is terminated outside
of the application. By employing tools that leverage a shared
taxonomy, OpenText is able to provide an extremely accurate
analysis of the vulnerability’s real security risk.

1. A unified taxonomy across
testing methods enables
a complete view of
vulnerabilities

2. Consistent remediation
guidance enables
collaboration and remediation

3. Powerful prioritization
reduces the noise

4. Layered defense provides a
safeguard

5. Unified vulnerability
management creates
feedback loops

5 Reasons Why SAST + DAST with OpenText Makes Sense 2

2 Consistent remediation guidance enables collaboration and
remediation. By leveraging a unified taxonomy across both
static and dynamic testing methods, developers are presented
with results that share recommendation advice and security
mappings.

Customer value
By using software that uses developer-friendly language,
developers won’t need to spend as much time training to
understand the reports. This allows them to spend less time
researching vulnerabilities and more time remediating them.

Real world example
With DevOps methodologies becoming more and more prevalent,
application security is becoming a team sport. Development,
operations, and security teams require that the tools leveraged
at various stages of the SDLC provide consistent vulnerability
detail. By leveraging OpenText static and dynamic testing
technologies, underpinned by a common vulnerability taxonomy,
teams can collaborate on vulnerabilities in a clear and concise
manner.

3 Powerful prioritization reduces the noise. All vulnerabilities are
not created equal. A weakness which is identified via source
code analysis may be mitigated outside of code, leading to a
lower net risk score. By layering dynamic analysis on top of static
analysis, customers gain a valuable additional risk metric which
allows them to see a more complete real-world risk picture.

Customer value
It is not realistic to remediate all findings. Modern application
security professionals are faced with difficult decisions when
deciding which issues to fix, and which to defer. By leveraging
a unified taxonomy across both static and dynamic testing,
customers can gain an additional metric that allows them to
choose which findings should be remediated first. Overall
security posture is enhanced, and developers are able to use
their time more efficiently by focusing on the most important
findings first.

Real world example
Modern application security programs use a wide range
of technologies and practices to mitigate risk. While static
analysis does a great job of identifying a deep and broad set
of vulnerability categories, it cannot account for production
application context. An organization protecting XSS via a WAF
may rightfully place a higher priority on remediating a non-WAF-
protected vulnerability, like unsafe deserialization.

Copyright © 2025 Open Text • 03.25 | 269-000055-001

4 Layered defense provides a safeguard. Static analysis provides
excellent coverage, but it cannot be run against production
environments where configurations and deployment options may
have an enormous impact on the applications overall risk posture.
Dynamic analysis allows for identifying issues later in the SDLC
and into production where they pose the greatest risk.

Customer value
By leveraging static analysis to identify vulnerabilities early in
the SDLC and dynamic analysis to identify externally facing
vulnerabilities later in the SDLC and into production, security
teams can implement a layered approach which delivers greater
security, because DAST acts as a safety net for vulnerabilities
that aren’t identified by SAST.

Real world example
It is true that DevOps cycles drive shorter release cycles that
provide more opportunities to identify and remediate security
defects, but the constantly accelerating churn of more releases
also introduces more opportunities for mistakes. Dynamic testing
can efficiently

5 Unified vulnerability management creates feedback loops.
Security and Development teams need to consider a wide
range of factors when identifying and remediating risk. The by
OpenText tools eliminate one of those factors by providing these
teams with a unified vulnerability management platform that
allows them to easily analyze findings.

Customer value
Teams are being overwhelmed by security information from
point solutions which focus on their individual niches. A unified
application security vulnerability management platform is not
only critical in terms of the simplified prioritization and triage
workflows that it introduces, but also in terms of the patterns
that can be gleaned from the data.

Real world example
The most profound benefit to leveraging a unified vulnerability
management platform centers around the data. A very basic
example of this value can be seen in trending of vulnerability
patterns. While it is important to identify vulnerabilities early in the
SDLC using technologies like static analysis, it is critically important
to create feedback loops that can identify when those findings
surface in running environments via a DAST scan. An organization
that identifies findings like XSS early in the SDLC and continues
to detect those issues in production, can focus their training and
development resources on addressing systemic problems.

About OpenText Static
Application Security
Testing
OpenText Static
Application Security
Testing pinpoints the
root cause of security
vulnerabilities in the
source code, prioritizes
the most serious issues,
and provides detailed
guidance on how to fix
them so developers can
resolve issues in less time
with centralized software
security management.

About OpenText Dynamic
Application Security
Testing
OpenText Dynamic
Application Security
Testing is a dynamic
application security testing
(DAST) tool that identifies
application vulnerabilities
in deployed web
applications and services.

Learn more ›

https://www.opentext.com/products/fortify-static-code-analyzer
https://www.opentext.com/products/fortify-static-code-analyzer
https://www.opentext.com/products/fortify-static-code-analyzer
https://www.opentext.com/products/fortify-webinspect
https://www.opentext.com/products/fortify-webinspect
https://www.opentext.com/products/fortify-webinspect
https://www.opentext.com/products/application-security

